Warp Beam Dynamics Simulation Update

Chris Hall

2-23-2021

Adding pipe boundary

Imported from STL file into Warp

- Processing intercepts with mesh to get boundary potential
- Only works with Warp's fast scraper no intercept information is calculated

Registering with Field Solver

Testing with Scraper

Beam parameters:

- Uniform Transverse distribution
 - Radius: 22 mm
- Current: 10 mA
- KE: 8 keV

Scraping is observed, but only with large radius

Testing with Scraper

Sample scraped particle locations

Beam parameters:

- Uniform Transverse distribution

- Radius: 22 mm

- Current: 10 mA

- KE: 8 keV

$$x' = \|(\mathbf{a} - \mathbf{p}) - ((\mathbf{a} - \mathbf{p}) \cdot \mathbf{n})\mathbf{n}\|$$

$$z' = \|(\mathbf{a} - \mathbf{p}) - ((\mathbf{a} - \mathbf{p}) \cdot \mathbf{n})\mathbf{n} + \mathbf{p}\|$$

$$\phi = \arctan\left(\frac{y}{x'}\right)$$

- 1. 2D Interpolation of CST field map for B_x and B_z (Uses SciPy RegularGridInterpolator)
- 2. Extract field value at (z', x')

$$B'_{x} = B_{x}cos(\phi)$$

$$B'_{y} = B_{x}sin(\phi)$$

$$B'_{z} = B_{z}$$

3. Rotate **B'** by θ to get **B** on the Warp grid

- 1. 2D Interpolation of CST field map for B_x and B_z (Uses SciPy RegularGridInterpolator)
- 2. Extract field value at (z', x')

$$B'_{x} = B_{x}cos(\phi)$$

$$B'_{y} = B_{x}sin(\phi)$$

$$B'_{z} = B_{z}$$

3. Rotate **B'** by θ to get **B** on the Warp grid

Reference taken from simulation in Warp using single, large field map through main solenoid

Implementation still has error(s)

